If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=16H^2+1024H
We move all terms to the left:
(H)-(16H^2+1024H)=0
We get rid of parentheses
-16H^2+H-1024H=0
We add all the numbers together, and all the variables
-16H^2-1023H=0
a = -16; b = -1023; c = 0;
Δ = b2-4ac
Δ = -10232-4·(-16)·0
Δ = 1046529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1046529}=1023$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1023)-1023}{2*-16}=\frac{0}{-32} =0 $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1023)+1023}{2*-16}=\frac{2046}{-32} =-63+15/16 $
| m2−49=0 | | 16x^2-3x-12=0 | | 12n+6=72+12n | | -(x/4)-2=x+3 | | n(n-1)=600 | | n-5/8+n+4=19/36 | | x+76+70=180 | | 4(1-p)=-4-+4 | | 9x+3+10-5=180 | | 4(x-3)+5=6x-2(3+x) | | x+135+130=180 | | -6x=-3x-10 | | 35x-3=34x-2 | | 3(5t-6)-(9t-12)=4(8t-15)-12 | | x+135+150=180 | | 4m+12=3m+42 | | 4m+10=3m+42 | | 10(x-5)-5(x-5)+5(x+5)=0 | | 7+3w=38 | | 130+55+x=180 | | -2+1=x+8 | | 12(3x-2)=70 | | 17x-5+20=180 | | 4x-100=30/5 | | 130+9x+5=180 | | 6x+12+108=180 | | 1/4-x/3=7/12 | | 10+6.9n=7+7.1n | | 36+5x+4=90 | | X=(1/4)n | | 20+h=25+4 | | 18.5=0.432h-10.44 |